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High-latitude ecosystems are exposed to more pronounced warming effects than

other parts of the globe. We develop a technique to monitor ecological changes in

a way that distinguishes climate influences from disturbances. In this study, we

account for climatic influences on Alaskan boreal forest performance with a data-

driven model. We defined ecosystem performance anomalies (EPA) using the

residuals of the model and made annual maps of EPA. Most areas (88%) did not

have anomalous ecosystem performance for at least 6 of 8 years between 1996 and

2004. Areas with underperforming EPA (10%) often indicate areas associated

with recent fires and areas of possible insect infestation or drying soil related to

permafrost degradation. Overperforming areas (2%) occurred in older fire

recovery areas where increased deciduous vegetation components are expected.

The EPA measure was validated with composite burn index data and Landsat

vegetation indices near and within burned areas.

Keywords: climate change; anomaly; performance; boreal; Alaska; Yukon River

Introduction

Site conditions, changing climate, natural disturbances, and the effects of human

management are often intermingled to create complex responses in vegetation.

Monitoring methods that do not separate these influences are difficult to interpret.

We present a method for analysing ecosystem performance anomalies that

separates the influences of climate and site potential (a measure of the land’s inherent

productivity) from the influences of disturbances, and we show its application to

boreal forest ecosystems in the Yukon River Basin, Alaska. The method builds upon

remotely sensed measures of vegetation greenness for each growing season. However,

a time series of greenness inherently reflects annual variations in temperature and

precipitation. The method presented here seeks to remove the influence of climate, so

that changes in underlying ecological condition are highlighted. We define an

‘expected ecosystem performance’ to represent the greenness response expected in a

particular year given the climate of that year, and we distinguish ‘performance

anomalies’ as cases where the ecosystem response is significantly different than the

expected ecosystem performance.
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High northern latitudes are experiencing climate change at faster rates than other

parts of the globe (Corell 2006, Hassol 2004). This warming has the potential to

create positive feedbacks, which could accelerate warming trends and intensify

impacts on arctic ecosystems (Chapin et al. 2005, Foley 2005, Hinzman et al. 2005,

Walker 2007). In its traditional range, the greenness of boreal forests has been

decreasing, as measured by satellite vegetation indices (Goetz et al. 2005, Bunn and

Goetz 2006, Reed 2006). This decrease is partially related to increasing fires, and

larger and more frequent fires are anticipated (Rupp et al. 2000a), which will affect

carbon storage (Harden et al. 2000). The deciduous components of boreal forests are

likely to increase because of postfire succession (Rupp et al. 2000a, Goulden et al.

2006) and other climate change impacts (Kronberg and Watt 2000, Calef et al. 2005).

Changing permafrost and active layer thickness will affect boreal ecosystems (Hinkel

and Nelson 2003, Bunn et al. 2005, Jorgenson et al. 2006, Zimov et al. 2006) through

changes in both surface and subsurface moisture (Yoshikawa and Hinzman 2003,

Striegl et al. 2005, Buffam et al. 2007, Smith et al. 2007). Under extreme conditions,

critical boreal forest ecological thresholds could be exceeded, resulting in conversion

to a persistent grassland steppe (Rupp et al. 2000b).

Identification of ‘climate change hot spots’ (Giorgi 2006) or ‘environments at

risk’ (Saxon et al. 2005) is important at regional and local scales. Areas under stress

are vulnerable to significant changes in vegetation (Rupp et al. 2000b, Calef et al.

2005, Hinzman et al. 2005). Quantification of these anomalous areas will also be

useful for regional carbon modelling (Magnani et al. 2007), wildlife dynamics

(Herfindal et al. 2006), and future vegetation predictions.
Annual variations in climate affect boreal forest biomass production (Kang et al.

2005, Kimball et al. 2006, Dunn et al. 2007) and plant growth (Bunn et al. 2005).

Several methods have been used to understand how climate or site conditions

influence the normalised difference vegetation index (NDVI) response. Hermann

et al. (2005) and Wessels et al. (2007) used regression approaches to account for

climatic impacts on NDVI in Africa to reveal anomalies attributable to factors other

than climate. Similar approaches have been used with grasslands and steppes in

North America (Wylie et al. 2005). Regression tree methods have been used to

quantify topographic controls on interannual vegetation variability (White et al.

2005) and to map maximum NDVI from meteorological data (Schwabacher and

Langley 2001). Seasonal NDVI was predicted for Canadian boreal forests using a

random forests ensemble prediction (Bunn et al. 2005).

Methods

Our modelling approach has four steps:

1. Compute ecosystem performance (EP) in terms of a seasonally integrated

NDVI.

2. Compute an expected ecosystem performance, representing the ecosystem

performance that would be expected for each pixel given that it had not

burned in 25 years and given the site potential and climate in the respective

year.
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3. Compute an ecosystem performance anomaly as the difference between the

ecosystem performance and the expected ecosystem performance.

4. Evaluate the changes in the ecosystem performance anomaly over time.

The ecosystem performance measure (step 1) reflects the actual ecosystem

performance for each pixel, thus it incorporates many influences including climate,

site potential, ecosystem stresses, and land management. The expected ecosystem

performance measure (Step 2) excludes the influences of ecosystem stresses (such as
fire or insects) and land management (such as logging or overgrazing), and

incorporates the site potential and climate (the precipitation and temperature

patterns of the given year). The measure of ecosystem performance anomaly (step 3)

highlights differences between the actual (step 1) and expected (step 2) ecosystem

performance measures, so that a negative value indicates an ecosystem that is

underperforming (perhaps due to fire or insects) and a positive value indicates an

ecosystem that is overperforming. Trends in the ecosystem performance anomaly

(step 4) give insights into the presence of ecosystem stresses or changes in land
management and will enable land managers and policy makers to evaluate the

condition of ecosystems over large areas, detect significant degradation or

improvement, and evaluate the effects of policies on ecosystem performance.

The following sections give details on the operational definitions and application

of the methods to the boreal forest.

Piecewise regression techniques

Several of the steps in the modelling process make use of rule-based piecewise

regression techniques. The piecewise regression approaches first partition the

information space into subspaces to optimise prediction. Then a linear multiple

regression model is fit within each information subspace. The methods allow more

precise modelling of complex nonlinear systems than standard multiple regression

and provide understanding of the mechanisms that control the relationships between
the independent and dependent variables. We applied rule-based piecewise regression

modelling methods (Wylie et al. 2007) to predict site potential and expected

ecosystem performance, as prototyped by Zhang et al. (2006). A subset of input

variables was selected to reduce model complexity and improve model robustness

(Lauenroth et al. 2006). We took care to ensure that the variables selected by the

modelling process were biologically meaningful.

Ecosystem performance (EP)

We presently define ecosystem performance (EP) in terms of seasonal integrated

NDVI over a growing season. Ecosystem performance was introduced by Tieszen

et al. (1997) and represents vegetation dynamics as captured by the seasonal integrals

of NDVI. Jia et al. (2002) and Breshears et al. (2005) have used seasonal integrals of

NDVI as proxies for vegetation dynamics. Prince et al. (1991) and Xia et al. (2005)

used seasonally integrated NDVI to map biomass, and Knapp and Smith (2001) used
annual NDVI integrals as a proxy for net primary production (NPP). Goetz et al.

(2005) combined photosynthetically active radiation and NDVI as a proxy for gross

photosynthesis in boreal forests. Acknowledging that there are errors associated in

the conversion of NDVI to biomass, gross primary productivity, or NPP, we choose to

198 B.K. Wylie et al.
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use the growing season integral of NDVI as a proxy for EP, ensuring that EP is a

quantity that can be consistently produced in both space and time.

EP�growing season integrated NDVI (1)

We used 1 km resolution advanced very high resolution radiometer (AVHRR)

NDVI from 1995 to 2004. These NDVI data were corrected for atmospheric, wide
field-of-view, and georegistration effects, and composited into 7-day periods

(Eidenshink 2006). The sequence of 7-day NDVI images was temporally smoothed

to remove residual clouds (Swets et al. 2000). A baseline NDVI value of 0.09

associated with bare soil and dormant vegetation was subtracted from the NDVI

composites (Jia et al. 2006), and the remainder was summed for the period from April

through the first week of October. This growing season time integrated NDVI served

as an estimate of ecosystem performance for the boreal forest area in our study. Goetz

et al. (2005) found little difference between integration periods from May to
September and May to October for North American boreal forests; however, our

integration began earlier and was focused only on higher latitude boreal forests in the

Yukon River Basin.

Expected ecosystem performance (EEP)

Expected ecosystem performance (EEP) is the EP that can be expected on a given

site and for climatic conditions of a given year, in the absence of disturbance. Highly
productive sites will have higher ecosystem performance measures than sites with

poor soils, steep slopes, or other conditions not conducive for vegetation growth. We

incorporate the site potential in the measure of EEP, so that pixels that have poor site

conditions will have lower EEP than those with good site conditions. In a similar

way, years that have favorable climate conditions will have higher EEP than those

with unfavorable conditions (too hot or too cold, or too wet or too dry).

We define EEP using a piecewise regression model predicting EP on undisturbed

sites (sites not burned in 25 years), driven by the site potential and yearly climate
variables:

EEP�f(site potential; land cover; yearly climate)undisturbed (2)

Ideally, a map of site potential would be derived from data sources that are

independent of the remotely sensed data that is used for estimating EP. However,

such maps were not available for our study area, so we developed a method for

mapping site potential from remotely sensed and ancillary data.

Our model does not account for forest age effect, although this effect may slightly

influence the modeled ecosystem performance anomaly (section 2.4) results. Chen

et al. (2003) documented that black spruce NPP in Canada is nonlinearly related to

forest stand age with approximate 50-year-old stands having the highest NPP.
However, we consider the forest age effect is minor relative to disturbances, thus the

age effect is accounted for in the model error.

Site potential

Site potential represents the long-term EP that averages out climatic variations but

accounts for spatial variation in long-term EP associated with site conditions like

International Journal of Digital Earth 199
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drainage, elevation, slope and aspect, permafrost conditions, soils, domain clusters

(Saxson et al. 2005), and surface geology. Site potential does not include disturbance

effects. The site potential map was developed at 1 km resolution to account for the

important effects of elevation, slope, aspect (Viereck et al. 1992, Calef et al. 2005),
and growing season length. Saxon et al. (2005) developed a good approximation of

site potential which combined the effects of climate, soils, and topography.

We developed a site potential map for boreal forest using long-term (1995 to

2004) average seasonal integrated NDVI as a preliminary estimate of site potential.

To make the site potential map independent of recent disturbance, we excluded areas

that had burned within the previous 25 years. Measures of vegetation productivity in

boreal forest systems (e.g., NDVI, gross primary productivity, and net primary

productivity) show recovery within 25 years after a fire (Viereck and Van Cleve 1984,
Hicke et al. 2003, Epting and Verbyla 2005, Karjalainen 2005, Goulden et al. 2006).

We used temporally static spatial data sets to train piecewise regression models

(using Cubist software†: http://www.rulequest.com/) to estimate long-term average

seasonal integrated NDVI. To construct the model, 1600 random points were cast on

coniferous forest regions from the modified 1991 land cover map within the Yukon

River Basin. A database was constructed from the random points that had not

burned in the previous 25 years with attributes for land cover, ecoregion, domain

cluster, permafrost, elevation, north and south aspect, surface geology, and long-
term average seasonal integrated NDVI:

Site Potential�f(land cover; ecoregion; domain clusters; permafrost;

elevation and derivatives; surface geology) (3)

This model showed biases with too much emphasis on the more common values near

the average. To remedy the biases, a bagging approach was applied (DeFries and

Chan 2000). The random points were split into two groups: 1) those within one

standard deviation of the long-term average seasonal integrated NDVI and 2) those

higher or lower than the one standard deviation limits. A subset training data set was

developed by combining a random sample of 35% of the values in group 1 with a
random sample of 75% of the values in group 2. The new data set provided a model

development data set that gave roughly equal representation to the rarer extremely

high or low values and the more common values near the mean. A piecewise

regression model was developed from this data set and applied to produce a map.

This process was repeated three times with replacement and resulted in three

different site potential maps. Using a bagging approach, the average prediction from

the three maps was used as the final site potential map.

Climate

Climate data were developed according to the methods of Jolly et al. (2005) and
interpolated on a 5-km grid. Maps of monthly surface radiation, precipitation, and

minimum and maximum temperatures were resampled to 1-km resolution using

bilinear interpolation to match the AVHRR NDVI data sets. Seasonal periods were

early summer (May�June), late summer (July�August), fall (September�October),

200 B.K. Wylie et al.
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and winter (November�April). Sixteen climate variables were formed by averaging

the four climate characteristics for each of the four seasonal periods.

Land cover data

A land cover data set for 1991 was available from the Forest Health Monitoring

Clearinghouse (http://agdc.usgs.gov/data/projects/fhm), developed from AVHRR

data for 1991. We used decision tree methods to fill in five coniferous forest land

cover classes within the areas classed as 1991 fires. High latitude boreal forests often

are quite open forests with significant shrub and tundra vegetation interspersed.

Several of the selected coniferous forest classes used in this analysis also had

secondary components of deciduous trees as well.

The land cover data set for 1991 from the Forest Health Monitoring Clearing-

house (http://agdc.usgs.gov/data/projects/fhm) was developed using AVHRR data

for 1991, but we needed a representation of the long-term areas of forest, whether

burned or not. We used decision tree methods to fill in five coniferous forest classes

within the areas classed as 1991 fires. This was done using a boosted decision tree

model (See5 software, De’ath and Fabricius 2000, DeFries and Chan 2000) trained

on unburned areas (13 784 random points) with temporally static data layers,

including ecoregions, domain clusters, elevation, north and south aspect, compound

topographic index (CTI), permafrost, surface geology, and site potential (developed

in this study). These site characteristics have been good indicators of expected forest

types (Viereck and Van Cleve 1984, Calef et al. 2005). The boosted decision tree

model had an overall training accuracy of 98% on 13 784 observations. Some minor

manual refinements were made within the 1991 burns using heads up digitizing. Only

areas with coniferous forests within the Yukon River Basin were used in this analysis.

Other data

Unified EcoRegions (Nowacki et al. 2001, http://agdc.usgs.gov/data/projects/fhm)

were used for ecoregion delineation and were represented as a categorical variable in

the database. The permafrost layer was from the 1:2 500 000 Permafrost map of

Alaska (Ferrians 1965, http://agdcftp1.wr.usgs.gov/pub/projects/fhm/permafrost.

html), and was also used as a categorical variable. Surface geology was also a

categorical variable, mapped at 1:1 584 000 (Karlstrom et al. 1964). Elevation was

from a 1-km digital elevation model (DEM). The DEM derivatives were calculated

from 60-m DEMs and consisted of a compound topographic index (CTI) and north

and south aspects with steep slopes. The CTI is a function of both slope and

upstream contributing area (Beven and Kirkby 1979, Chaplot and Walter 2003).

North aspects were defined as aspects between 3158 and 458 (where North�08 and

aspect angles are measured clockwise) on slopes greater than 8.5%. South aspects

were defined as aspects between 1358 and 2258 on slopes greater than 8.5%. East and

West aspects were disregarded. These DEM derivatives were continuous variables

that averaged the CTI or the measured percent occurrence of the aspect variables for

each 1-km resolution grid cell. Environmental domains represent areas with similar

environmental conditions and were derived by Saxon et al. (2005) by clustering

edaphic, topographic, and climatic information. Fire perimeters and burn dates were

International Journal of Digital Earth 201
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acquired from the Bureau of Land Management fire database (http://agdc.usgs.gov/

data/blm/fire).

Model for expected ecosystem performance (EEP)

The model for EEP as shown in equation (2) was developed by applying a rule-based
piecewise regression technique. The training data used EP as the predicted variable,

and site potential and climate as the driving variables. The model was trained on a

subset of the random points in the boreal forest area for locations that had not

burned in the previous 25 years. The training database included annual EP and

climate data for the years 1995 to 2004 (excluding 2000), as well as forest type land

cover. Piecewise regression models were developed to predict EEP for all years from

this database using the independent variables, including site potential, seasonal

integrals (early summer, late summer, fall and winter) of minimum temperature,
maximum temperature, precipitation, and solar radiation, and land cover for boreal

forest classes. Three bagging models were derived using methods similar to the site

potential modelling, but in this case, the same input variables were used in all three

bagging models.

Ecosystem performance anomaly (EPA)

We define an ecosystem performance anomaly (EPA) as the ecosystem performance
measure in a given year minus the expected ecosystem performance:

EPA�EP�EEP (4)

We assume that the influence of climate will be the same for both EP and EEP, so

that the ecosystem performance anomalies are not associated with annual variations
in climate.

In Figure 1, the EEP is plotted against EP. The scatter of the points around the

overall regression line represents the EPA. We assume that most of the variation of

the residuals around the regression line represents information about anomalous

ecosystem performance. The residuals also include model error, but we expect it to be

small relative to the performance anomaly information and largely accounted for by

the confidence intervals. Anomaly thresholds were determined from the 90%

confidence intervals calculated when fitting a regression model between EP and
EEP. Annual anomaly maps were computed using the difference between EP and

EEP for each year.

We conducted validation studies on the EPA measure using composite burn index

data and Landsat data.

Trends in ecosystem performance anomaly

We evaluate trends in EPA by determining if there is a statistically significant positive
or negative slope to a regression fit through the EPA measures across time. By

analysing each pixel, we can make maps of the trends.

We define an ecosystem performance anomaly trend (EPAT) in terms of a linear

regression for each pixel, where the time (year) is the independent variable and the

EPA is the dependent variable:

202 B.K. Wylie et al.
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EPA�a� year�b (5)

where a is the slope of the regression line, and b is the intercept. We classify all pixels

according to whether the slope is statistically significant and whether the slope is

positive, near zero, or negative. The annual trend of the performance anomaly

measure should reveal areas which are degrading or improving over time, with

climatic variation taken into account.
The performance anomaly time series (1996�1999, 2001�2004) was assessed with

a time series regression. The year 2000 was not used because of unreliable AVHRR

data owing to the degraded orbit and late overpass time of the NOAA 14 satellite.

Linear regressions were constructed with ‘year’ as the independent variable and

‘ecosystem performance anomaly’ as the dependent variable. This analysis was done

for all the boreal forest pixels in the study area. The spatial output included the

estimated EPA value, n (number of years), slope coefficient, standard error, and t

score. For this analysis, the map of t score was used to identify both slope
significance and slope direction (positive or negative).

The sequence of EPA maps was summarised to show areas with consistent EPA

through the time period. Areas which were identified as underperforming anomalies

for at least 75% of the years or overperforming for at least 75% of the years were

Figure 1. Model predictions of expected ecosystem performance (EEP) compared with

actual ecosystem performance (EP) for 1995�2004 (excluding 2000). Pixels were selected

randomly from boreal forest areas which have not burned in 25 years. Green areas represent

overperformance and are greater than the 90% confidence limit above the regression line.

Magenta areas represent underperformance, and are less than the 90% confidence limit below

the regression line.
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identified. This temporal summarisation of EPA was then combined with EPAT to

identify combinations of EPAT and areas of consistent EPA.

Results

Expected ecosystem performance

The important driving variables for EEP were site potential, land cover (five forest

classes), maximum temperature (Sept.�Oct.), minimum temperature (May�June,

July�August, winter), precipitation (all seasons), and photosynthetically active

radiation (all seasons). The same variables were used for each of the three

randomised subsets, and the model had training R2 values ranging from 0.81 to

0.90. The test data were the subset of the data not used for training. Because the

training data were stratified to give a more equal representation throughout the

range of EP values, the test data were greatly restricted in high and low values of EP,

and a high proportion were near the mean EP values. Because the R2 statistic is

sensitive to both the range of values and their distributions, lower R2 are observed on

the test data. Values of the mean standard error (MSE) of the regression were similar

for the test and training data sets, with the test MSE values being lower. The average

predicted values from the three models for computing EEP showed little bias and

accounted for 84% of the variation of EP (Figure 1).

The piecewise regression models for each of the three bagging models used a

committee model of five which resulted in 15 piecewise regression models. A

committee model builds a set of successive piecewise regression models with each

successive model improving on the errors of the previous model (http://www.rule

quest.com/cubist-win.html). Committee models are useful for fine tuning reasonably

accurate models and for producing maps which are more spatially coherent than

noncommittee models. Each of the three bagging models had an average of 33

piecewise regression equations for each of the five committee models. The result was an

overall total of 500 piecewise regression equations each with different combinations of

independent variables and stratification criteria. In other studies, we have quantified

the relative frequency of use and importance for prediction of variables from complex

piecewise regression models (Wylie et al. 2007, Wylie et al. 2003, Zhang et al. 2007).

The variable use-frequency for gratifying piecewise regressions was quantified as the

percent utilisation. Similarly, a nonlinear ‘‘prediction importance’’ weight was

determined for each regression equation and summed across the regression equations.

Variables important for stratification of the various regressions were land cover, site

potential, fall solar radiation, and late summer precipitation (Table 1). As a result,

important independent variables in the regression models were spring minimum

temperature, site potential, fall maximum temperature, fall solar radiation, and late

summer solar radiation. These models were used for mapping EEP for each year from

1995 to 2005 for coniferous boreal forest areas within the Yukon River Basin.

Ecosystem performance anomaly

Maps of the EPA are shown in Figure 2. The anomaly maps were coloured to reflect

negative anomalies (underperforming), positive anomalies (overperforming), and

normal pixels as determined by the 90% confidence intervals from Figure 1.

204 B.K. Wylie et al.
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Figure 3 shows the performance anomaly map for 2004, with an overlay of recent

fire perimeters. The negative values for the performance anomalies often indicate

that vegetation is underperforming in areas with recent fires. Underperforming areas

which were not burned are also of interest as they may represent areas of insect

infestations or changing soil and permafrost conditions which result in a drier boreal

forest (Yoshikawa and Hinzman 2003).

The annual performance anomaly maps were validated by focusing on known

disturbances such as fires. We compared changes in performance anomaly (pre- and

postfire) to a field-acquired composite burn index (CBI) (Epting et al. 2005, Sorbel

and Allen 2005). In addition, Landsat spectral indices derived from at-sensor

reflectance from within a burned area and the adjacent nonburned area were

compared to the performance anomaly.

Validation with CBI

We used CBI field data to assess if annual EPA captured defoliation associated with

forest fires. The CBI quantifies the degree of defoliation in various canopy layers

(Key and Benson 2005) and has been used to validate remotely sensed burn severity

(Epting et al. 2005). The data were originally collected for validation and calibration

for Landsat 30-m remotely sensed products, so we averaged all CBI plot data within

corresponding 1 km EPA pixels. One to three additional nonburned normal-

performing 1 km pixels were added for each fire and assigned a CBI of zero. Because

the CBI may not be appropriate for nonforest areas (Epting et al. 2005), one fire was

excluded because the tree cover estimate from MODIS Vegetation Continuous Fields

(Hansen et al. 2002) had localised nonburned tree cover of less than 25%. Since EPA

were not uniform within the burned perimeter prior to the fire, the difference

between prefire and postfire EPA were compared to CBI.

Table 1. Relative use and relative prediction importance of independent variables for the EEP

model.

Independent

variable

Stratification relative use

(%)

Prediction importance

(%)

Site potential 15% 11%

Fall solar radiation 14% 7%

Late summer precipitation 14% 6%

Late summer minimum temperature 4% 15%

Winter solar radiation 10% 6%

Land cover 16% 0%

Fall maximum temperature 6% 9%

Spring minimum temperature 2% 13%

Late summer solar radiation 5% 7%

Winter precipitation 5% 4%

Spring solar radiation 2% 8%

Spring precipitation 4% 5%

Winter minimum temperature 3% 5%

Fall precipitation 1% 3%
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The comparisons with field-based CBI and the change in EPA from pre- to

postfire had R2 values ranging from 0.43 to 0.75 and mean standard errors ranging

from 0.21 to 0.40 (Table 2). Higher R2 values for up to four years after the burn

indicate that the EPA continues to reflect the influence of the fire. Geotz et al. (2006)

similarly observed residual burn effects with NDVI over extended regrowth periods.

Figure 3. Ecosystem performance anomaly (EPA) for 2004, with perimeters of fires that

occurred after 1996. The colored portion of the image represents the boreal forest areas of

Alaska within the Yukon River Basin.

Figure 2. Boreal forest ecosystem performance anomalies in the Yukon River Basin of

Alaska, 1995 to 2006. The year 2000 is excluded because the AVHRR data were unreliable.
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Measuring the agreement between field data and 1-km remotely sensed data is

difficult because of sub-kilometre heterogeneity of vegetation, terrain, and soil.

Despite this, and the fact that the original CBI data were collected for validation at

the 30-m scale, the R2 and MSE values indicate general agreement.

Validation using Landsat TM

Spectral indices were derived from 2006 Landsat at-sensor reflectance indices

(Landsat Project Science Office 1998, Chander and Markham 2003, Chander et al.

2004) to compare with ecosystem anomaly data from 2004. On the year of the burn,

the growing season NDVI could be confounded with early summer nonburned

performance and postfire reduced performance. We used two fires to quantify the

relationship between spectral indices derived from 2006 Landsat and the 2004 EPA

(Table 3). Spectral indices tend to reduce the effects of different view angles and

varying atmospheric conditions. The temporal dynamics of spectral indices have

been useful in monitoring forest change in tropical forests (Hayes and Sader 2001).

We selected vegetation indices which had some biological meaning and incorporated

a diverse set of spectral bands (Table 3). The Landsat spectral indices were averaged

to 1-km resolution to match the EPA pixel size and alignment. Random 1 km pixels

were selected from three classes which were defined along a burn gradient using the

burn perimeters and the 2004 EPA: 1) underperforming within the burn, 2) normal-

performing within the burn, and 3) normal-performing from 2 to 4 kilometres

outside the burn perimeter. Areas with recent burns or overperformance were

excluded from the locations outside the burn perimeter. The validation tests used 123

of the 1 km pixels for the Sand Creek fire and 224 pixels for the Long Creek fire.

Agreement along the burn defoliation gradient between 2006 Landsat spectral

indices and AVHRR EPA showed the strongest relationships with the specific leaf

area index and the moisture index (Table 3). These two indices incorporated mid-

infrared bands (band 5 or band 7), which may incorporate differences in vegetation

structure (Fiorella and Ripple 1993).

Table 2. Statistics for the regression of the composite burn index (CBI) on the difference

between pre- and postfire performance anomaly at 1 km resolution for selected 2000 and 2001

fires. The fires are identified by a number and name, and the number of pixels (n) used to

develop the regressions is shown.

Years

Fire (n) Statistic 2001 2002 2003 2004

242 (11) R2 0.66 0.75 0.70 0.75

Witch fire MSE 0.40 0.29 0.35 0.29

260 (13) R2 0.55 0.43 0.68 0.68

Jessica fire MSE 0.30 0.38 0.21 0.21

288 (14) R2 * 0.57 0.58 0.54

Otter Creek MSE * 0.24 0.24 0.26

*Burned 2001
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In Figure 4, the Landsat moisture index is related to the 2004 EPA in the vicinity

of the 2002 Long Creek fire, with pixels identified according to the fire gradient. The

unburned normal pixels have Moisture Index values greater than 0.2, while most

burned underperforming pixels have a Moisture Index less than 0.2. Normal-

performing pixels within the burned area are generally between the other two classes.

Both the Landsat spectral indices in 2006 and EPA in 2004 are able to represent the

gradient from burned to nonburned areas. This correct gradient representation

reinforces the usefulness of coarse resolution data and shows that the EPA measure

is sensitive to major boreal disturbances.

Ecosystem performance anomaly trends (EPAT)

Figure 5 shows how the EPA changes with time. The map is stratified according to

the direction of the anomaly trend and the significance of the slope of the regression

line of the EPA with time. The areal extent of each of the categories is illustrated in

Figure 6. For example, 64% of the area did not show a significant trend (p�0.20).

More areas had negative trends than positive trends, which was similar to trends for

the entire North American boreal forest (Goetz et al. 2005). Negative trends were

common where fires had occurred after 1998. Positive trends were commonly

associated with areas which burned prior to 1995 and may represent deciduous

postfire species and ultimately coniferous forest recovery (Viereck et al. 1992, Calef

et al. 2005). There are ample examples of both positive and negative trend areas not

associated with fires. The negative trends may represent areas of insects, disease, or

changing permafrost and active layer thickness. The positive trends may indicate

increasing deciduous tree components.

To validate the long-term trend of EPA, a subset area was selected where

historical and recent cloud-free Landsat imagery were available, and where there was

a diverse mix of decreasing and increasing EPA trends (Landsat 5 on Sept. 14, 1986,

and Landsat 7 on Aug. 13, 2004, path/row 67/13). The 1 km trends map was

Table 3. Four spectral indices are defined in terms of ratios of Landsat bands. These are

applied in the analysis of the Long Creek and Sand Creek fires. Statistics (R2) are shown for

Landsat indices regressed on ecosystem performance anomaly (EPA) for 2004, as well as

additional information on the fires and the Landsat images.

Index Landsat Bands

Long Creek

Fire R2
Sand Creek

Fire R2

specific Leaf Area Index (sLAI) 4/(3�7) 0.71 0.72

Moisture Index (4�5)/(4�5) 0.78 0.70

green NDVI (gNDVI) (4�2)/(4�2) 0.58 0.49

NDVI (4�3)/(4�3) 0.39 0.56

Fire information

Fire identifier a490 312284

Year of Burn 2002 2003

Postfire Landsat path/row 73/15 66/15

Postfire Landsat Date 5 July 2006 28 July 2006
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categorised into four classes based on the direction and significance of the slope of

the regression line: negative slopes (pB0.05), positive slopes (pB0.05), nonsignifi-

cant slopes (p�0.20), and other (weakly significant slopes 0.05BpB0.20). Random

points were selected from each of the first three classes and none from the ‘other’

class. The same Landsat spectral indices used to validate the EPA (Table 3) were

Figure 4. The relationship between the Landsat TM moisture index and the 2004 ecosystem

performance anomaly at the 2002 Long Creek fire, stratified according to burn gradient

classes.

Figure 5. Ecosystem performance anomaly trends (EPAT) for the boreal forest region in the

Yukon River Basin, Alaska. The image is stratified according to the direction (positive or

negative) and significance (t-test probability p) of the slope of the regression line through the

ecosystem performance anomaly (EPA) values and years for each pixel.
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calculated for both of the Landsat dates and averaged to a 1-km spatial resolution.

The 1986 to 2004 change in each of the four Landsat vegetation indices was

calculated at the random points for each trend class.

Most of the positive trend class in the validation area was associated with a 1995

fire while most of the decreasing trend class was associated with a 1999 fire,

indicating that postfire vegetation recovered during the period from 1995 to 2006.

The 1995 fire occurred at the beginning of the temporal window for the trend

analysis, which may explain the increasing trend in EPA. The 1999 fire occurred near

the midpoint of the trend analysis window (1995 to 2004) and may have been a more

severe burn, followed by drier years (2004 was a record fire year in Alaska).

All four of the Landsat spectral indices showed similar results to those shown in

Figure 7 for green NDVI (gNDVI). The EPAT categories were statistically distinct in

the validation data. Positive changes in Landsat spectral indices were observed in the

positive trend anomaly class and negative changes in Landsat spectral indices were

observed in the negative trend anomaly class. This indicates that the EPAT from

1995 to 2004 are consistent with Landsat changes in spectral indices from 1986 to

2004. The not significant class standard deviation bands overlapped zero for gNDVI

and NDVI but were higher than zero for the moisture index and the specific leaf area

index. Phenological differences between the September 1986 and the August 2004

Landsat scenes would affect decreasing, increasing, and nonsignificant areas

similarly.

Whereas Figure 5 is based just on the slope of the regression line between the

EPA measure and years, in Figure 8 the map classes were stratified by both the

magnitude of the anomaly and the slope of the regression line. Positive or negative

anomalies were defined when the EPA for a pixel was significant at pB0.1 in 6 of the

8 years, and in the ‘normal’ case the EPA was not significantly different than zero at

pB0.1 for 3 or more of the 8 years. The three magnitude classes are intersected with

three classes for the significance of the slope, to give nine map classes.

Most of the distinct blocks where the EPA magnitude is normal and the slope of

the trend is negative (dark purple) were associated with fires which occurred between

1999 and 2002. This characteristic was evident in about 45 000 km2 of the study area

(Table 4). A few fires in 2003 and 2004 showed a similar pattern. These patterns

Figure 6. Percentage of each trend class in the boreal forest area, 1996 to 2004.
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represent fires which occurred in the mid and late years of the time interval used for

the trend analysis. An area along the Tanana River near the southeastern edge of the

study area was normal with negative trend but was not associated with a fire.

Figure 7. Long-term changes in Landsat green NDVI (gNDVI) as related to three classes of

ecosystem performance anomaly trends (EPAT).

Figure 8. The ecosystem performance anomaly trends (EPAT) are grouped according to

both the magnitude of the anomaly and the slope of the trend. The magnitudes are classed as

positive (negative) if the EPAT is greater than (less than) zero in 6 of 8 years, and as ‘normal’ if

it does not meet the criteria for either positive or negative. The slope of the trend is classified as

positive (or negative) if it is significantly different than zero with pB0.10.
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Negative anomalies with negative trends indicate areas under stress (red, 4

701 km2). These appear to be in areas with fires between 1999 and 2003. This class

also occurs in nonburned areas along the northern part of the Alaska�Canada

boundary (area a, Figure 8). This area was investigated visually with Landsat image

pairs for 1986 and 2004, and widespread defoliation was evident, which may be

associated with an insect or disease outbreak. Areas along the Tanana and Yukon

Rivers (area b, Figure 8) tend to have a lot of negative anomalies with no trends

(yellow, 25 079 km2) or negative anomalies with negative trends.

Discussion

We have developed a method of modelling ecosystem performance anomalies that can

be operationally applied using current remote sensing technologies. By incorporating

site potential and seasonal climate variables in the model for expected ecosystem

performance, we can define management and disturbance effects in terms of the

difference between the actual and expected ecosystem performance. This distinction

will be helpful to land managers because measures of vegetation response such as EP

are strongly influenced by the climate of a given year. The ecosystem EPA measures

represent a basis for detection of changes not driven by yearly climate variations. By

mapping trends in the anomalies, it is possible to identify significant disturbances

such as fires, developing disturbances such as insect infestations, and more subtle

disturbances such as changed soil drainage related to permafrost degradation.

Ecosystem performance

The starting point for our analysis is a measure of ecosystem performance. Although

other implementations are possible, we currently use the time integrated NDVI,

which is a measure of greenness that can be interpreted in terms of gross primary

productivity (Bunn et al. 2005). These anomaly detection and mapping approaches

could also be adapted to use more refined estimates of gross primary productivity

(Zhang et al. 2007), net ecosystem exchange (Wylie et al. 2007), wildlife habitat, and

biodiversity.

Expected ecosystem performance

The model and approach presented here provides significant advances in the

application of remotely sensed data because the influences of site potential and

Table 4. Area estimates for combinations of EPAT (trend) and EPA (performance) shown in

Figure 8.

Trend

performance

Positive trend:

km2
No trend:

km2
Negative

trend: km2
Total:

km2
Percentage:

%

Positive anomaly 535 7140 711 8386 2.4

Normal 19208 239825 44748 303781 88.0

Negative anomaly 3363 25079 4701 33143 9.6

Total 23106 272044 50160 345310 100.0

Percentage (%) 6.7 78.8 14.5 100.0
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climate are separated from those of disturbance and land management. The direct

measures of EP on an annual basis tend to combine all of these effects. The EEP

measure effectively captures the spatial variation due to site potential and the

temporal variation due to climate. Because the model is calibrated on relatively

undisturbed areas, the influences of disturbance and land management are

minimised in the EEP measure. The site potential, intuitively the maximum

production expected for a site, incorporates length of growing season, aspect, slope,

elevation, soil drainage, and other factors that influence boreal forest performance

(Viereck et al. 1992, Calef et al. 2005).

We minimised the impacts from interpolation errors associated with the climatic

data sets by using four seasonal integration periods and including elevation in the

interpolation. Pavelsky and Smith (2006) found interpolated precipitation products

significantly outperformed reanalysis data sets in correlations to river discharge.

Hallett et al. (2004) found large-scale climatic data to be better predictors of

ecological processes than local climate.

Chen et al. (2003) documented nonlinear growth in boreal forests with peak NPP

occurring around a forest age of 50 years, while Goulden et al. (2006) found NDVI

to recover 25 years after a fire. To a degree, the EEP model may adapt somewhat to

age differences because piecewise regressions and regression trees can handle

nonlinear relationships and because young forests were excluded from model

development. In addition, with the anomaly outlier detection thresholds being

based on the 90% confidence intervals, a lot of the model errors with respect to the

actual EP are accounted for. The application of the EEP model was not age

constrained, so there may be minor EPA errors of opposite magnitudes associated

with both the lower coniferous growth rates and the higher deciduous components

(which have higher NDVI values than conifer) associated with younger forest stands.

The EPA values may also result in some false underperformance detection in old

growth forests where NPP drops to a lower plateau at stand ages around 150 years.

However, neither of these forest-age-related effects are obvious in Figure 1.

The models used current year growing season climate, except for the winter

estimates which included previous year’s November and December climate data. Bunn

et al. (2005) found precipitation and temperature in the boreal forest to be driven by

climatic conditions from the previous spring. High-latitude boreal forest performance

was not driven by previous spring climatic conditions in their study. Given that the

Yukon River Basin represents the northernmost extent of boreal forest in North

America, the climate-based models developed in this study should be appropriate.

Ecosystem performance anomaly

The remaining variation, after site potential and climate are accounted for, should

reveal underperforming and overperforming anomalies associated with stressed or

changing boreal forest systems. We used the simple difference between EP and EEP

to compute the EPA. In the boreal forest regions of the Yukon River Basin in

Alaska, most of the area was not anomalous, but negative anomalies were more

common than positive anomalies (Figure 6). Negative anomalies generally indicate

recent fires and possible infestations of insects or disease or moisture stress related to

permafrost degradation.
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Trends in expected ecosystem performance anomaly

There are many potential applications for the methods to evaluate trends in

ecosystem performance anomalies. To our knowledge this study is the only one that

investigates anomalies in which climatic effects have been removed from the trends in

boreal forests.

We expect that evaluating trends in EPA should be useful in situations similar to

those where previous work has shown trends in EP to be useful. For example,

remotely sensed vegetation indices at coarse resolution (greater than 250 m) can

effectively track wildlife condition (Herfindal et al. 2006, Rasmussen et al. 2006),

boreal forest carbon fluxes (Goulden et al. 2006), and fire areas (Goetz et al. 2006,

Bartalev et al. 2007). Burning is the primary controller of boreal forest performance

(Calef et al. 2005, Goetz et al. 2005) and is crucial for regional modelling of forest

carbon sequestration variation (Magnani et al. 2007). Northern latitude photosyn-

thetic activity has substantial interannual variability (Geotz et al. 2005) with climate

having an important effect on boreal forest performance (Kang et al. 2005, Kimball

et al. 2006). Decreasing trends in summer greenness were documented in the boreal

forest of the Yukon River Basin (Angert et al. 2005, Bunn and Geotz 2006). This

trend may be associated with long-term drying trends (Dai et al. 2004) and degrading

permafrost (Jorgenson et al. 2006). Others have used climatic information to explain

trends in remotely sensed vegetation indices (Jia et al. 2004, Goetz et al. 2005) and

used climate data to map remotely sensed vegetation indices (Schwabacher and

Langley 2001).

This study indicates that the boreal forests in central Alaska are responding to

climatic variation in dynamic fashions which are similar to those observed in an

analysis of the total North American boreal forest (Bunn and Geotz 2006). We have

identified stressed boreal forest areas which may be highly vulnerable to predicted

significant changes in boreal ecosystems (Rupp et al. 2000a, Saxon et al. 2005, Calef

et al. 2005). The methods will potentially improve regional model representation of

disturbances which may not be adequately represented by field data and regional

models (Thompson et al. 2006, Magnani et al. 2007). Models of carbon dynamics

and vegetation change will benefit from the EPAT data by identifying regions under

environmental stress and vulnerable to dramatic change.

Conclusions

Our approach uses climate data to account for interannual variations in ecosystem

performance. The ecosystem performance anomalies reflect ecological changes that

are caused by factors other than climate or site potential. The underperforming areas

documented in this study were strongly associated with burn disturbances. The

results are consistent with decreasing annual trends in 8-km seasonally integrated

NDVI in the Yukon River Basin as documented by Reed (2006). In portions of the

study, boreal forest performance is declining faster than we would expect based on

climate, and the trend is becoming more severe with time. This approach quantified

localised disturbances at a 1 km resolution. Many areas with decreasing trends in

EPA were associated with fires that occurred in the mid to late part of the time series;

2004 was a record fire year in Alaska. Goetz et al. (2005) documented decreasing

trends where fires occurred late in a time series.
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Increasing trends in the performance anomaly were associated with fires that

occurred prior to or early in the time series, or during the first 9 years after a burn.

Goulden et al. (2006) found that NDVI values increased for about 20 years after a

fire and attributed this increase to rapid deciduous domination in the first few years
postburn, with gradually increasing coniferous components after 20 years postburn.

We show that the boreal forests in central Alaska are responding to climatic

variation in a dynamic fashion. The 1 km resolution input images are more detailed

than those used in some previous studies. The capability to model the influences of

annual climatic variation and focus on the residual anomalies offers land managers a

new tool for evaluating changes on the landscape. The ecological trends that we

identified are consistent with the results reported by Bunn and Geotz (2006). We

have identified stressed boreal forest areas which may be vulnerable to predicted
dramatic changes in boreal ecosystems (Rupp et al. 2000a, Saxon et al. 2005, Calef

et al. 2005). The methods used in this study will potentially improve regional model

representation of small patchy disturbance areas which may not be adequately

represented by field data and regional models (Thompson et al. 2006, Magnani et al.

2007). We identify regionally anomalous areas so that they can be better represented

in models to predict regional changes in vegetation and in carbon stocks and fluxes.
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